• 首页 首页 icon
  • 工具库 工具库 icon
    • IP查询 IP查询 icon
  • 内容库 内容库 icon
    • 快讯库 快讯库 icon
    • 精品库 精品库 icon
    • 问答库 问答库 icon
  • 更多 更多 icon
    • 服务条款 服务条款 icon

线性代数(基础篇)第一章:行列式 、第二章:矩阵

武飞扬头像
程序员爱德华
帮助1

线性代数

0:串联各章

等价条件

1. ①|A|≠0,A可逆
⇦⇨②r(A)=n,A满秩
⇦⇨③α₁,α₂,…αn线性无关
⇦⇨④Ax=0仅有零解

2. ①|A|=0,A不可逆
⇦⇨②r(A)<n,A不满秩
⇦⇨③α₁,α₂,…αn线性相关
⇦⇨④Ax=0有非零解



第1章 行列式

1.行列式的定义

(1)行列式的本质定义

二阶行列式是以两个向量为邻边的平行四边形的面积,三阶行列式是以三个向量为邻边的平行六面体的体积,n阶行列式是以n个向量为邻边的n位图形的体积。

所以,读者应有这样的观点:把行列式看作是由若干个向量拼成的。
行列式的值非0时,具体是多少,只是量的问题。行列式的值是否为0,是一个质的问题。
例:①D₃≠0,则体积不为0,3个向量线性无关。若D₃=0,则3个向量线性相关。
②Dn≠0,n个向量线性无关。Dn=0,n个向量线性相关。

(2)行列式的逆序数法定义

1.排列和逆序
学新通

2.n阶行列式定义 (逆序数法)
【注意,行下标要顺排。求列标的逆序数,确定正负号】
学新通
学新通


举例1:
学新通

举例2:行列式的逆序数定义是“对角线法则”的由来。对角线法则只适用于二阶与三阶行列式。
学新通

例题1:
学新通


(3)行列式的展开定理 (第三种定义)

1.余子式
去掉 a i j a_{ij} aij所在的第i行、第j列元素,余下元素组成的n-1阶子行列式,称为 a i j a_{ij} aij的余子式,记作 M i j M_{ij} Mij
学新通

2.代数余子式
代数余子式: A i j = ( − 1 ) i j M i j A_{ij}=(-1)^{i j}M_{ij} Aij=(1)i jMij

3.行列式的行(列)展开定理
(1)行展开定理:同一行的元素与代数余子式相乘,为行列式的值,即 ∑ k = 1 n a i k A i k = ∣ A ∣ ( i = 1 , 2 , 3... n ) \sum\limits_{k=1}^na_{ik}A_{ik}=|A| \qquad (i=1,2,3...n) k=1naikAik=A(i=1,2,3...n)   【将n阶行列式 降阶为 n个n-1阶行列式】

(2)不同行的元素与余子式相乘为0: ∑ k = 1 n a i k A j k = 0 ( i ≠ j ) \sum\limits_{k=1}^na_{ik}A_{jk}=0 \qquad (i≠j) k=1naikAjk=0(i=j) 学新通学新通

2.行列式的性质

1.行列互换,其值不变: ∣ A ∣ = ∣ A T ∣ |A|=|A^T| A=AT   【行列地位等价】
2.行列式中 某行(列)元素全为0,则行列式值为0
3.若行列式某一行有公因子k,则可以提到行列式的外面   【倍乘】
4.行列式中某行元素均是两个元素之和,则可拆成两个行列式之和。反之,可相加。   (单行可拆性、单行可加性)
学新通

5.行列式中 两行(列)互换,行列式值反号
6.行列式中 两行元素相等或对应成比例,则行列式值为0
7.某行乘k倍加到另一行,行列式值不变   【倍加】

3.行列式的公式

1. ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |AB|=|A|·|B| AB=AB   (A B为同阶方阵)
推论: ∣ A n ∣ = ∣ A ∣ n |A^n|=|A|^n An=An

2.若A为n阶方阵,则 ∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| kA=knA

3.一般地, ∣ A B ∣ ≠ ∣ A ∣ ∣ B ∣ |A B|≠|A| |B| A B=A B

4. ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1

5.不满秩、不可逆、向量组线性相关,则行列式 = 0       满秩、可逆、行列式非零、线性无关的关系


例题1:23李林四(一)15.
学新通
分析:学新通
答案:2048


4.基本行列式

(1)主对角线行列式

右上三角行列式、左下三角行列式、对角行列式:主对角线元素的乘积
学新通

(2)副对角线行列式

逆序数 τ ( n , n − 1 , n − 2 , . . . 1 ) = ( n − 1 ) ( n − 2 ) . . . 1 = n ( n − 1 ) 2 τ(n,n-1,n-2,...1)=(n-1) (n-2) ... 1=\dfrac{n(n-1)}{2} τ(n,n1,n2,...1)=(n1) (n2) ... 1=2n(n1)
学新通

(3)拉普拉斯行列式

主对角线、副对角线的分块矩阵的行列式
学新通


例题1:计算行列式
学新通
分析:凑分块矩阵、零矩阵。将13列互换,再将24行互换
答案: ( a 1 a 4 − b 1 b 4 ) ( a 2 a 3 − b 2 b 3 ) (a_1a_4-b_1b_4)(a_2a_3-b_2b_3) (a1a4b1b4)(a2a3b2b3)


(4)范德蒙德行列式

盯着第二行,所有大的下标减去小的下标
学新通

(5)爪型行列式

斜爪 消 平(竖)爪,化为三角行列式
学新通

(6)异爪型行列式:递推法

(1)阶数不高:直接展开 ①凑0最多 ②按展开后基本型最多(三角行列式最多)的方式展开
(2)阶数较高,n阶:递推法
学新通
(1)递推法:建立 D n D_n Dn D n − 1 D_{n-1} Dn1 的关系式,从而实现递推。
①元素分布规律相同
D n − 1 D_{n-1} Dn1只比 D n D_n Dn 少一阶

(2)展开方法
①三对角行列式方法:所有的行加到最后一行 (所有列加到第一列),然后展开。观察负号。
②两斜一横(竖):对爪尾的两个尖尖进行展开,找递推规律


例题1:低阶
学新通

分析:异爪型行列式,按照最后一行展开。发现余子式均为主对角线行列式

答案: λ 4 λ 3 2 λ 2 3 λ 4 λ^4 λ^3 2λ^2 3λ 4 λ4 λ3 2λ2 3λ 4

例题2:15年13.   求n阶异爪型行列式
学新通

分析:异爪型行列式,按照爪尾的两个尖尖展开,找递推规律
学新通

答案: 2 n 1 − 2 2^{n 1}-2 2n 12


(7)行(列)和相等

全部加到第一列,提取公因式,第一列全为1。
再将第一列下方全消为0,按照第一列展开。

(1)主对角线
学新通
分析:行和相等,为 a (n-1)b

答案:
学新通
学新通

(2)副对角线
学新通

5.求行列式

(1)具体型行列式的计算

①化7大基本行列式、7大性质、行展开定理、逆序数法
②递推法:n阶异爪型行列式
③含x:行列式表示的函数和方程


例题1:
学新通
答案:
学新通


(2)抽象行列式

例题1:
学新通
分析:从右向左,化简目标,凑成已知

答案:a b

例题2:将向量的线性组合 表示为 矩阵相乘的形式
学新通
分析:
学新通

答案:10


(3)代数余子式 的改写

学新通



第2章 矩阵

1.矩阵的定义

1.矩阵:
矩阵本身是一个数表,不进行运算。矩阵由若干个向量组成。
m×n矩阵n阶方阵 (n阶矩阵,即为n×n矩阵)

2.同型矩阵:
行数相同,列数也相同
学新通
学新通

方阵

1.方阵定义:
方阵为行列数相等的矩阵,如Ann、Amm

2.只有方阵才有的性质:
(1)行列式
只有方阵才有行列式。
别再问汤家凤老师3行4列的行列式怎么算了。“你有没有发现把我吓死了”(doge)

(2)逆矩阵
1.可逆矩阵一定是方阵。
2.如果矩阵A是可逆的,其逆矩阵是唯一的。

(3)特征值、特征向量
只有方阵才有特征值与特征向量

(4)二次型
只有方阵才有二次型

学新通



2.矩阵运算

五大矩阵运算:①求行列式 ②求转置 ③求逆 ④求伴随 ⑤求幂
学新通

(1)相等
学新通

(2)加法
学新通
学新通

(3)数乘矩阵
学新通

(4)矩阵乘法
c i j c_{ij} cij a i a_i ai b j b_j bj两向量的内积
学新通
注:
学新通

矩阵乘法不满足交换律,不能随意交换位置, A B ≠ B A AB≠BA AB=BA
故:① ( A B ) 2 ≠ A 2 B 2 (AB)^2≠A^2B^2 (AB)2=A2B2,正确的写法应该是 ( A B ) 2 = A B A B ≠ A A B B (AB)^2=ABAB≠AABB (AB)2=ABAB=AABB
( A B ) 2 ≠ A 2 2 A B B 2 (A B)^2≠A^2 2AB B^2 (A B)2=A2 2AB B2,正确的写法应该是 ( A B ) 2 = ( A B ) ( A B ) = A 2 A B B A B 2 (A B)^2=(A B)(A B)=A^2 AB BA B^2 (A B)2=(A B)(A B)=A2 AB BA B2

学新通

(5)转置、转置矩阵
①若A为方阵, ∣ A ∣ = ∣ A T ∣ |A|=|A^T| A=AT
( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

学新通

转置T:transpose、transposition

(6)向量的内积与正交

内积: ( α , β ) = α T β (α,β)=α^Tβ (α,β)=αTβ
正交: α T β = 0 α^Tβ=0 αTβ=0
学新通


例题:
学新通
答案:
学新通


(7)施密特正交化

β 1 = α 1 β₁=α₁ β1=α1

β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 β₂=α₂-\dfrac{(α₂,β₁)}{(β₁,β₁)}β₁ β2=α2(β1,β1)(α2,β1)β1

β 3 = α 3 − ( α 3 , β 1 ) ( β 1 , β 1 ) β 1 − ( α 3 , β 2 ) ( β 2 , β 2 ) β 2 β₃=α₃-\dfrac{(α₃,β₁)}{(β₁,β₁)}β₁-\dfrac{(α₃,β₂)}{(β₂,β₂)}β₂ β3=α3(β1,β1)(α3,β1)β1(β2,β2)(α3,β2)β2

β n = α n − ( α n , β 1 ) ( β 1 , β 1 ) β 1 − ( α n , β 2 ) ( β 2 , β 2 ) β 2 − . . . − ( α n , β n − 1 ) ( β n − 1 , β n − 1 ) β n − 1 β_n=α_n-\dfrac{(α_n,β₁)}{(β₁,β₁)}β₁-\dfrac{(α_n,β₂)}{(β₂,β₂)}β₂-...-\dfrac{(α_n,β_{n-1})}{(β_{n-1},β_{n-1})}β_{n-1} βn=αn(β1,β1)(αn,β1)β1(β2,β2)(αn,β2)β2...(βn1,βn1)(αn,βn1)βn1

学新通


例题:
学新通
答案:
学新通


(8)矩阵的幂

5种方法求矩阵的幂An
A = B k E A = B kE A=B kE二次展开式 A n = ( B k E ) n A^n = (B kE)^n An=(B kE)n

A = B C,An = (B C)n。要求BC=CB,可用二项展开式 。一般令C=kE

②第五章:A可相似对角化
∣ λ E − A ∣ |λE-A| λEA求出A的特征值和特征向量。用特征值组成 Λ Λ Λ,用特征向量组成 P P P。验证A可相似对角化。
则: P − 1 A P = Λ P^{-1}AP=Λ P1AP=Λ,则 A = P Λ P − 1 A=PΛP^{-1} A=PΛP1,则 A n = P Λ n P − 1 A^n=PΛ^nP^{-1} An=PΛnP1

r ( A ) = 1 r(A)=1 r(A)=1 A n = [ t r ( A ) ] n − 1 ⋅ A A^n=[tr(A)]^{n-1}·A An=[tr(A)]n1A

r(A)=1,则n个特征值中,一个特征值为tr(A),剩余n-1个特征值均为0

④分块矩阵,分块分别求n次幂:
A = [ B O O C ] A=\left[\begin{array}{cc} B & O \\ O & C \end{array}\right] A=[BOOC],则 A n = [ B n O O C n ] A^n=\left[\begin{array}{cc} B^n & O \\ O & C^n \end{array}\right] An=[BnOOCn]

⑤试算A2、A3,归纳An

学新通
学新通


例题1:试算,归纳
学新通
答案:
学新通

例题2: A n = ( B C ) n A^n=(B C)^n An=(B C)n
学新通
答案:
学新通

例题3:张宇30讲线代分册
学新通
答案:
学新通

例题4:23李林四(一)23.
学新通
答案:
学新通


3.几种重要矩阵(几种特殊矩阵)

1.零矩阵
O

2.单位矩阵
E或I

3.数量矩阵
kE

4.对角矩阵 (对角阵)

Λ = d i a g ( λ 1 , λ 2 , . . . , λ n ) = ( λ 1 λ 2 . . . λ n ) Λ={\rm diag}(λ₁,λ₂,...,λ_n)=\left(\begin{array}{cc} λ₁ & & \\ & λ₂ & \\ & & ...\\ & & & λ_n \end{array}\right) Λ=diag(λ1,λ2,...,λn)= λ1λ2...λn

对角阵的幂:主对角线上元素各取幂
Λ n = ( λ 1 n λ 2 n . . . λ n n ) Λ^n=\left(\begin{array}{cc} {λ₁}^n & & \\ & {λ₂}^n & \\ & & ...\\ & & & {λ_n}^n \end{array}\right) Λn= λ1nλ2n...λnn

举例n=-1:
对角阵的逆矩阵:主对角线上元素都取倒数
Λ − 1 = ( 1 λ 1 1 λ 2 . . . 1 λ n ) Λ^{-1}=\left(\begin{array}{cc} \frac{1}{λ₁} & & \\ & \frac{1}{λ₂} & \\ & & ...\\ & & & \frac{1}{λ_n} \end{array}\right) Λ1= λ11λ21...λn1


5.上/下三角矩阵
上(下)三角矩阵和对角阵的特征值,均为主对角线元素

6.对称矩阵
A T = A ⇔ a i j = a j i A^T=A\Leftrightarrow a_{ij}=a_{ji} AT=Aaij=aji

a i j = A i j a_{ij}=A_{ij} aij=Aij,则 A T = A ∗ A^T=A^* AT=A

7.反对称矩阵
A T = − A ⇔ { a i j = − a j i , i ≠ j a i i = 0 A^T=-A \Leftrightarrow \left\{\begin{aligned} a_{ij}&=-a_{ji},i≠j \\ a_{ii}&=0 \end{aligned}\right. AT=A{aijaii=ajii=j=0

8.正交矩阵

定义: Q T Q = Q Q T = E Q^TQ=QQ^T=E QTQ=QQT=E
⇔ Q T = Q − 1 \Leftrightarrow Q^T=Q^{-1} QT=Q1
⇔ \Leftrightarrow Q Q Q是由标准正交基组成(两两垂直正交,且都是单位向量)

9.分块矩阵

性质:副对角线要对调位置

(1)分块矩阵的逆矩阵
①对角阵
主对角线: ( A O O B ) − 1 = ( A − 1 O O B − 1 ) \left(\begin{array}{cc} A & O \\ O & B \end{array}\right)^{-1}=\left(\begin{array}{cc} A^{-1} & O \\ O & B^{-1} \end{array}\right) (AOOB)1=(A1OOB1)

副对角线: ( O A B O ) − 1 = ( O B − 1 A − 1 O ) \left(\begin{array}{cc} O & A \\ B & O \end{array}\right)^{-1}=\left(\begin{array}{cc} O &B^{-1} \\ A^{-1} & O \end{array}\right) (OBAO)1=(OA1B1O)

②三角阵

左乘同行,右乘同列,取相反数

主对角线:
( A O C B ) − 1 = ( A − 1 O − B − 1 C A − 1 B − 1 ) \left(\begin{array}{cc} A & O \\ C & B \end{array}\right)^{-1}=\left(\begin{array}{cc} A^{-1} & O \\ -B^{-1}CA^{-1} & B^{-1} \end{array}\right) (ACOB)1=(A1B1CA1OB1)

( A C O B ) − 1 = ( A − 1 − A − 1 C B − 1 O B − 1 ) \left(\begin{array}{cc} A & C \\ O & B \end{array}\right)^{-1}=\left(\begin{array}{cc} A^{-1} & -A^{-1}CB^{-1} \\ O & B^{-1} \end{array}\right) (AOCB)1=(A1OA1CB1B1)

副对角线:
( O A B C ) − 1 = ( − B − 1 C A − 1 B − 1 A − 1 O ) \left(\begin{array}{cc} O & A \\ B & C \end{array}\right)^{-1}=\left(\begin{array}{cc} -B^{-1}CA^{-1} &B^{-1} \\ A^{-1} & O \end{array}\right) (OBAC)1=(B1CA1A1B1O)

( C A B O ) − 1 = ( O B − 1 A − 1 − A − 1 C B − 1 ) \left(\begin{array}{cc} C & A \\ B & O \end{array}\right)^{-1}=\left(\begin{array}{cc} O &B^{-1} \\ A^{-1} & -A^{-1}CB^{-1} \end{array}\right) (CBAO)1=(OA1B1A1CB1)

(2)分块矩阵的转置矩阵
主对角线: ( A O O B ) T = ( A T O O B T ) \left(\begin{array}{cc} A & O \\ O & B \end{array}\right)^T=\left(\begin{array}{cc} A^T & O \\ O & B^T \end{array}\right) (AOOB)T=(ATOOBT)

副对角线: ( O A B O ) T = ( O B T A T O ) \left(\begin{array}{cc} O & A \\ B & O \end{array}\right)^T=\left(\begin{array}{cc} O &B^T \\ A^T & O \end{array}\right) (OBAO)T=(OATBTO)

10.幂零矩阵
A k = O A^k=O Ak=O
幂零矩阵的主对角线元素为0,每升一次幂,元素就向右上方移动一斜行,秩减一。

11.幂幺矩阵
A k = E A^k=E Ak=E

12.幂等矩阵
A 2 = A A^2=A A2=A

13.行阶梯形矩阵
①若有零行,全在下方:所有非零行在所有零行的上面
②从行上看,出现连续0的个数自上而下严格单增:所有非零行的首个非零元所在列标严格单增

14.行最简形矩阵
①首先是行阶梯形矩阵
②每个非零行的首个非零元(主元)为1
③每个非零行的首个非零元所在列的其他元素均为0

15.标准形矩阵
左上角为单位矩阵,其他元素均为0

学新通


例题1:07年15.   幂零矩阵
学新通

分析:A的秩为3,A²的秩为2,A³的秩为1,An=A4的秩为0

学新通

答案:1

例题2:08年5.   幂零阵、可逆矩阵定义、立方和公式、立方差公式

学新通

分析:由 A 3 = O A³=O A3=O E ± A 3 = E E±A^3=E E±A3=E

E = E A 3 = ( E A ) ( E 2 − A E A 2 ) = ( E A ) ( E − A A 2 ) E=E A^3=(E A)(E^2-AE A^2)=(E A)(E-A A²) E=E A3=(E A)(E2AE A2)=(E A)(EA A2),则 E A E A E A可逆且 ( E A ) − 1 = E − A A 2 (E A)^{-1}=E-A A² (E A)1=EA A2

E = E − A 3 = ( E − A ) ( E 2 A E A 2 ) = ( E − A ) ( E A A 2 ) E=E-A^3=(E-A)(E^2 AE A^2)=(E-A)(E A A^2) E=EA3=(EA)(E2 AE A2)=(EA)(E A A2),则 E − A E-A EA可逆且 ( E − A ) − 1 = E A A 2 (E-A)^{-1}=E A A^2 (EA)1=E A A2

答案:C

例题3:18年6.


4.可逆矩阵

(1)可逆矩阵的定义

1.对于n阶方阵A,若存在一个n阶方阵B,使得 A B = E  或  B A = E AB=E\ 或\ BA=E AB=E  BA=E,则A、B互逆:
A = B − 1 , B = A − 1 A=B^{-1},B=A^{-1} A=B1B=A1
A B = E = B A AB=E=BA AB=E=BA

2.特殊情况:若 A ( k B ) = E A(kB)=E A(kB)=E,则 k B kB kB为A的逆矩阵

学新通


例题1:
学新通
分析:
A B = A B AB = A B AB=A B
A B − A − B = O AB -A-B=O ABAB=O
A ( B − E ) − B = O A(B-E)-B=O A(BE)B=O
A ( B − E ) − ( B − E ) = E A(B-E)-(B-E)=E A(BE)(BE)=E
( A − E ) ( B − E ) = E (A-E)(B-E)=E (AE)(BE)=E
A − E A-E AE B − E B-E BE互为逆矩阵

答案:A

例题2:01年4.
学新通

解:由 A 2 A − 4 E = O A² A-4E=O A2 A4E=O,移项得 A 2 A − 2 E = 2 E A² A-2E=2E A2 A2E=2E
( A 2 E ) ( A − E ) = 2 E (A 2E)(A-E)=2E (A 2E)(AE)=2E ∴ ( A − E ) − 1 = 1 2 ( A 2 E ) ∴(A-E)^{-1}=\dfrac{1}{2}(A 2E) (AE)1=21(A 2E)注意,系数要放在括号外,不要把矩阵写成分式

答案: 1 2 ( A 2 E ) \dfrac{1}{2}(A 2E) 21(A 2E)

例题3:23李林四(三)15.   A B = E = B A AB=E=BA AB=E=BA
学新通

分析:
凑可逆阵:由 A 2 = 2 A B E A²=2AB E A2=2AB E,移项得 A 2 − 2 A B = E A²-2AB=E A22AB=E,即 A ( A − 2 B ) = E A(A-2B)=E A(A2B)=E
A A A A − 2 B A-2B A2B互为可逆阵,∴ A ( A − 2 B ) = ( A − 2 B ) A A(A-2B)=(A-2B)A A(A2B)=(A2B)A,即 A 2 − 2 A B = A 2 − 2 B A A²-2AB=A²-2BA A22AB=A22BA。即 A B = B A AB=BA AB=BA
∣ A B − B A 2 A ∣ = ∣ 2 A ∣ = 2 3 ∣ A ∣ = 8 × 1 = 8 |AB-BA 2A|=|2A|=2³|A|=8×1=8 ABBA 2A=∣2A=23A=8×1=8

答案:8

例题4:22年15.
学新通

分析:可逆矩阵的定义
学新通学新通

答案:-E

例题5:08年5.   幂零阵、可逆矩阵定义、立方和公式、立方差公式
学新通

E 3 = E 3 A 3 = ( E A ) ( E 2 − A E A 2 ) = ( E A ) ( E − A A 2 ) E^3=E^3 A^3=(E A)(E^2-AE A^2)=(E A)(E-A A²) E3=E3 A3=(E A)(E2AE A2)=(E A)(EA A2),则 E A E A E A可逆且 ( E A ) − 1 = E − A A 2 (E A)^{-1}=E-A A² (E A)1=EA A2
E 3 = E 3 − A 3 = ( E − A ) ( E 2 A E A 2 ) = ( E − A ) ( E A A 2 ) E^3=E^3-A^3=(E-A)(E^2 AE A^2)=(E-A)(E A A^2) E3=E3A3=(EA)(E2 AE A2)=(EA)(E A A2),则 E − A E-A EA可逆且 ( E − A ) − 1 = E A A 2 (E-A)^{-1}=E A A^2 (EA)1=E A A2

答案:C


(2)可逆矩阵性质

若A为n阶可逆矩阵,则:
①A的逆矩阵必唯一
∣ A ∣ ≠ 0 |A|≠0 A=0
A − 1 A^{-1} A1也可逆,且 ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
A T A^T AT也可逆,且 ( A − 1 ) T = ( A T ) − 1 (A^{-1})^T=(A^T)^{-1} (A1)T=(AT)1
④乘可逆矩阵,不改变原矩阵的秩
( k A ) − 1 = 1 k A − 1   ( k ≠ 0 ) (kA)^{-1}=\dfrac{1}{k}A^{-1} \ (k≠0) (kA)1=k1A1 (k=0)
∣ A − 1 ∣ = ∣ A ∣ − 1 |A^{-1}|=|A|^{-1} A1=A1
⑦若B也为n阶可逆矩阵,则 A B AB AB也可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
A B A B A B不一定可逆,且 ( A B ) − 1 ≠ A − 1 B − 1 (A B)^{-1}≠A^{-1} B^{-1} (A B)1=A1 B1

学新通


例题1:17年13.   乘可逆矩阵,不改变原矩阵的秩
学新通

分析:
A = ( 1 0 1 1 1 2 0 1 1 ) → ( 1 0 1 0 1 1 0 0 0 ) A=\left(\begin{array}{cc} 1 & 0 & 1\\ 1 & 1 & 2\\ 0 & 1 & 1\\ \end{array}\right)→\left(\begin{array}{cc} 1 & 0 & 1\\ 0 & 1 & 1\\ 0 & 0 & 0\\ \end{array}\right) A= 110011121 100010110 ∴ r ( A ) = 2 ∴r(A)=2 r(A)=2

矩阵 ( A α 1 , A α 2 , A α 3 ) = A ( α 1 , α 2 , α 3 ) (Aα_1,Aα_2,Aα_3)=A(α_1,α_2,α_3) (Aα1,Aα2,Aα3)=A(α1,α2,α3)
α 1 , α 2 , α 3 α_1,α_2,α_3 α1,α2,α3线性无关   ∴ ( α 1 , α 2 , α 3 ) (α_1,α_2,α_3) (α1,α2,α3)为可逆矩阵
r ( A α 1 , A α 2 , A α 3 ) = r ( A ) = 2 r(Aα_1,Aα_2,Aα_3)=r(A)=2 r(Aα1,Aα2,Aα3)=r(A)=2

答案:2

例题2:17年5.


(3)求逆矩阵

学新通

1.逆矩阵定义: ▯ ⋅ ▯ = E ▯·▯=E =E

A B = E AB=E AB=E,则 A − 1 = B A^{-1}=B A1=B

2.用伴随矩阵求逆矩阵: A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\dfrac{1}{|A|}A^* A1=A1A

求数值矩阵的逆矩阵,步骤:
①求|A|≠0
②求A*
③写出 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\dfrac{1}{|A|}A^* A1=A1A

注意,求 A ∗ A^* A 的时候:① A ∗ A^* A A i j A_{ij} Aij的位置是竖着求的 ②注意负号 A i j = − ( 1 ) i j M i j A_{ij}=-(1)^{i j}M_{ij} Aij=(1)i jMij

3.初等变换法求逆矩阵: ( A ∣ E ) → ( E ∣ A − 1 ) (A|E)→(E|A^{-1}) (AE)(EA1)

学新通


例题:2阶矩阵的逆矩阵 = 二阶矩阵的伴随矩阵 / 行列式
A*:主对调,副变号
学新通


5.伴随矩阵 A*

(1)伴随矩阵的定义

A = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) A=\left(\begin{array}{ccc} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{array}\right) A= a11a21a31a12a22a32a13a23a33 ,则 A ∗ = ( A 11 A 21 A 31 A 12 A 22 A 32 A 13 A 23 A 33 ) A^*=\left(\begin{array}{ccc} A_{11} & A_{21} & A_{31}\\ A_{12} & A_{22} & A_{32}\\ A_{13} & A_{23} & A_{33} \end{array}\right) A= A11A12A13A21A22A23A31A32A33

(2)伴随矩阵性质 (伴随矩阵公式)
  1. A ⋅ A ∗ = A ∗ ⋅ A = ∣ A ∣ E ⇨ { A ∗ = ∣ A ∣ A − 1 A − 1 = A ∗ ∣ A ∣ A·A^* = A^*·A=|A|E\quad ⇨\quad \left\{ \begin{aligned} A^*=|A|A^{-1} \\ A^{-1}=\dfrac{A^*}{|A|} \end{aligned} \right. AA=AA=AE A=AA1A1=AA

推广为:🐕·🐕*=|🐕|E

推导: A ⋅ A ∗ = ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . a n 1 a n 2 . . . a n n ) ( A 11 A 21 . . . A n 1 A 12 A 22 . . . A n 2 . . . . . . . . . A 1 n A 2 n . . . A n n ) = ( ∣ A ∣ ∣ A ∣ . . . ∣ A ∣ ) = ∣ A ∣ E A·A^* =\left(\begin{array}{cccc} a_{11} &a_{12} &... &a_{1n} \\ a_{21}&a_{22} &... &a_{2n}\\ ...&... &&...\\ a_{n1}&a_{n2}&...&a_{nn} \end{array}\right)\left(\begin{array}{cccc} A_{11}&A_{21} &... &A_{n1} \\ A_{12}&A_{22} &... &A_{n2}\\ ...&... &&...\\ A_{1n}&A_{2n}&...&A_{nn} \end{array}\right)=\left(\begin{array}{cccc} |A| & & & \\ &|A| & &\\ & &...&\\ &&&|A| \end{array}\right)=|A|E AA= a11a21...an1a12a22...an2.........a1na2n...ann A11A12...A1nA21A22...A2n.........An1An2...Ann = AA...A =AE

2. ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*| = |A|^{n-1} A=An1
( A ∗ ) ∗ = ∣ A ∣ n − 2 ⋅ A (A^*)^*=|A|^{n-2}·A (A)=An2A
学新通
学新通

3. r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) < n − 1 r(A^*)= \left\{ \begin{aligned} n,\quad & r(A)=n \\ 1,\quad &r(A)=n-1 \\ 0,\quad &r(A)<n-1 \end{aligned} \right. r(A)= n,1,0,r(A)=nr(A)=n1r(A)<n1

4. ( k A ∗ ) n = k n − 1 A ∗ (kA^*)^n=k^{n-1}A^* (kA)n=kn1A
学新通


例题1:05年12.
学新通
分析:
学新通

答案:C

例题2:09年6.
学新通

答案:
学新通

例题3:11年6.   r(A*)的性质
学新通
分析:
学新通
答案:D

例题4:13年13.
学新通

分析:
学新通
答案:-1




6.初等变换 与 初等矩阵

(1)三种初等变换

以下三种变换,称为矩阵的初等变换:
1.倍乘:用非零常数k乘矩阵的某一行(列)
2.互换:互换矩阵中某两行(列)的位置
3.倍加:将矩阵的某一行(列)的k倍加到另一行(列)

对行进行初等变换,称为初等行变换;对列进行初等变换,称为初等列变换

(2)初等变换性质

1.初等变换只有秩不变,其他:迹、特征值、行列式均可能改变
理论上不改变特征值的初等变换,只有相似变换和正交变换。

(3)初等矩阵

初等矩阵:由单位矩阵经过一次初等变换得到的矩阵

1.倍乘初等矩阵 E i ( k ) E_i(k) Ei(k):第 i i i行(或第2列)乘 k k k
2.互换初等矩阵 E i j E_{ij} Eij:第 i , j i,j i,j行(或第 i , j i,j i,j列)互换
3.倍加初等矩阵 E i j ( k ) E_{ij}(k) Eij(k):第 j j j行的 k k k倍加到第 i i i行 (或第 i i i列的k倍加到第 j j j列)

学新通
学新通

(4)初等矩阵的性质
初等矩阵\性质 转置 求逆
①倍乘初等矩阵 E i ( k ) E_i(k) Ei(k) E i T ( k ) = E i ( k ) {E_i}^T(k)=E_i(k) EiT(k)=Ei(k),不变 E i − 1 ( k ) = E i ( 1 k ) {E_i}^{-1}(k)=E_i(\dfrac{1}{k}) Ei1(k)=Ei(k1)
②互换初等矩阵 E i j E_{ij} Eij E i j T = E i j {E_{ij}}^T= E_{ij} EijT=Eij,不变 E i j − 1 = E i j {E_{ij}}^{-1}= E_{ij} Eij1=Eij,不变
③倍加初等矩阵 E i j ( k ) E_{ij}(k) Eij(k) E i j T ( k ) = E j i T ( k ) {E_{ij}}^T(k)={E_{ji}}^T(k) EijT(k)=EjiT(k),ij互换 E i j − 1 ( k ) = E j i ( − k ) {E_{ij}}^{-1}(k)={E_{ji}}(-k) Eij1(k)=Eji(k)

学新通


例题1:23李林四(四)5.
学新通
学新通
分析:
学新通
答案:D

例题2:14年13.


7.矩阵的秩

(1)矩阵的秩的定义

①设A是m×n矩阵,A中最高阶非零子式的阶数称为矩阵A的秩,记为r(A)
②若存在 k k k阶子式不为零,且任意 k 1 k 1 k 1阶子式(如果有的话)全为零,则 r ( A ) = k r(A)=k r(A)=k,且 r ( A n × n ) = n ⇔ ∣ A ∣ ≠ 0 ⇔ A 可逆 r(A_{n×n})=n \Leftrightarrow |A|≠0 \Leftrightarrow A可逆 r(An×n)=nA=0A可逆
③矩阵秩的本质:组成该矩阵的线性无关的向量的个数,有且仅有k个

k阶子式:A中任取k行k列,交叉点的元素按照原来的位置排列的k阶行列式,称为k阶子式。

(2)秩的性质

1. r ( A B ) ≤ m i n { r ( A ) , r ( B ) } r(AB)≤min\{ r(A),r(B)\} r(AB)min{r(A),r(B)}
推论①:若A可逆,则 r ( A B ) = r ( B A ) = r ( B ) r(AB)=r(BA)=r(B) r(AB)=r(BA)=r(B)

2. A B = O AB=O AB=O,则 r ( A ) r ( B ) ≤ A 的列数 r(A) r(B)≤A的列数 r(A) r(B)A的列数

3. r ( A B ) ≤ r ( A ) r ( B ) r(A B)≤r(A) r(B) r(A B)r(A) r(B)

r ( A B ) ≤ r ( A , B ) ≤ r ( A ) r ( B ) r(A B)≤r(A,B)≤r(A) r(B) r(A B)r(A,B)r(A) r(B)

4.若A为m×n矩阵,矩阵的秩≤行秩,≤列秩。即 r ( A ) ≤ m i n { m , n } r(A)≤min\{m,n\} r(A)min{m,n}

5. r ( A ) = r ( A T ) = r ( A A T ) = r ( A T A ) r(A)=r(A^T)=r(AA^T)=r(A^TA) r(A)=r(AT)=r(AAT)=r(ATA)

6. r ( A , B ) = r ( A , B ) T = r ( A T B T ) r(A,B)=r(A,B)^T=r\dbinom{A^T}{B^T} r(A,B)=r(A,B)T=r(BTAT)

7.分块矩阵的秩:
r ( A O O B ) = r ( A ) r ( B ) r\left(\begin{array}{cc} A & O \\ O & B \end{array}\right)=r(A) r(B) r(AOOB)=r(A) r(B)

r ( A ) r ( B ) ≤ r ( A O C B ) ≤ r ( A ) r ( B ) r ( C ) r(A) r(B)≤r\left(\begin{array}{cc} A & O \\ C & B \end{array}\right)≤r(A) r(B) r(C) r(A) r(B)r(ACOB)r(A) r(B) r(C)


例题1:18年6.
学新通

分析:矩阵是列分块的,可以作列变换而不改变矩阵的秩

A、B:(A,AB)=A(E,B)
∵r(A,b)≥r(A),∴①r(A,AB)≥r(A)
∵r(AB)≤r(A)且r(AB)≤r(B),∴②r(A,AB)=r[A(E,B)]≤r(A)
综上①②,r(A,AB)=r(A)
A✔B❌

C: m a x { r ( A ) , r ( ) B } ≤ r ( A , B ) ≤ r ( A ) r ( B ) max\{r(A),r()B\}≤r(A,B)≤r(A) r(B) max{r(A),r()B}r(A,B)r(A) r(B) 。C❌

D: r ( A , B ) = r ( A , B ) T = r ( A T B T ) r(A,B)=r(A,B)^T=r\dbinom{A^T}{B^T} r(A,B)=r(A,B)T=r(BTAT),D❌

答案:A


8.等价矩阵、等价标准型

1.等价矩阵:
①如果矩阵A经初等变换得矩阵B,则称矩阵A与矩阵B等价
②同型下,r(A)=r(B)

2.等价标准型:
满秩矩阵可经初等变换为单位阵,不满秩则只能化为 ( E r O O O ) \left(\begin{array}{cc} E_r & O \\ O & O \end{array}\right) (ErOOO)形式

学新通

这篇好文章是转载于:学新通技术网

  • 版权申明: 本站部分内容来自互联网,仅供学习及演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,请提供相关证据及您的身份证明,我们将在收到邮件后48小时内删除。
  • 本站站名: 学新通技术网
  • 本文地址: /boutique/detail/tanhggcehh
系列文章
更多 icon
同类精品
更多 icon
继续加载