• 首页 首页 icon
  • 工具库 工具库 icon
    • IP查询 IP查询 icon
  • 内容库 内容库 icon
    • 快讯库 快讯库 icon
    • 精品库 精品库 icon
    • 问答库 问答库 icon
  • 更多 更多 icon
    • 服务条款 服务条款 icon

面试限流算法有哪些以和分布式场景服务限流

武飞扬头像
逆流°只是风景-bjhxcc
帮助1

前言

限流的实现算法有很多,但常见的限流算法有四种:固定窗口限流算法、漏桶算法和令牌桶算法、滑动窗口限流算法。下面我来分别介绍一下。

1.固定窗口限流算法

固定窗口限流算法(Fixed Window Rate Limiting Algorithm)是一种最简单的限流算法,其原理是在固定时间窗口(单位时间)内限制请求的数量。该算法将时间分成固定的窗口,并在每个窗口内限制请求的数量。具体来说,算法将请求按照时间顺序放入时间窗口中,并计算该时间窗口内的请求数量,如果请求数量超出了限制,则拒绝该请求。

假设单位时间(固定时间窗口)是1秒,限流阀值为3。在单位时间1秒内,每来一个请求,计数器就加1,如果计数器累加的次数超过限流阀值3,后续的请求全部拒绝。等到1s结束后,计数器清0,重新开始计数。如下图:
学新通

1.2 固定窗口限流的伪代码实现

   public static Integer counter = 0;  //统计请求数
   public static long lastAcquireTime =  0L;
   public static final Long windowUnit = 1000L ; //假设固定时间窗口是1000ms
   public static final Integer threshold = 10; // 窗口阀值是10
   
    /**
     * 固定窗口时间算法
     * 关注公众号:捡田螺的小男孩
     * @return
     */
    public synchronized boolean fixedWindowsTryAcquire() {
        long currentTime = System.currentTimeMillis();  //获取系统当前时间
        if (currentTime - lastAcquireTime > windowUnit) {  //检查是否在时间窗口内
            counter = 0;  // 计数器清0
            lastAcquireTime = currentTime;  //开启新的时间窗口
        }
        if (counter < threshold) {  // 小于阀值
            counter  ;  //计数统计器加1
            return true;
        }

        return false;
    }
学新通

1.2 固定窗口算法的优缺点

优点:固定窗口算法非常简单,易于实现和理解。
缺点:存在明显的临界问题,比如: 假设限流阀值为5个请求,单位时间窗口是1s,如果我们在单位时间内的前0.8-1s和1-1.2s,分别并发5个请求。虽然都没有超过阀值,但是如果算0.8-1.2s,则并发数高达10,已经超过单位时间1s不超过5阀值的定义啦。
学新通

2.漏桶算法

漏桶算法的实现思路是,有一个固定容量的漏桶,水流(请求)可以按照任意速率先进入到漏桶里,但漏桶总是以固定的速率匀速流出,当流入量过大的时候(超过桶的容量),则多余水流(请求)直接溢出。如下图所示:
学新通

漏桶算法提供了一种机制,通过它可以让突发流量被整形,以便为系统提供稳定的请求,比如 Sentinel 中流量整形(匀速排队功能)就是此算法实现的,如下图所示:
学新通

3.令牌桶算法

令牌按固定的速率被放入令牌桶中,桶中最多存放 N 个令牌(Token),当桶装满时,新添加的令牌被丢弃或拒绝。当请求到达时,将从桶中删除 1 个令牌。令牌桶中的令牌不仅可以被移除,还可以往里添加,所以为了保证接口随时有数据通过,必须不停地往桶里加令牌。由此可见,往桶里加令牌的速度就决定了数据通过接口的速度。我们通过控制往令牌桶里加令牌的速度从而控制接口的流量。
令牌桶的实现原理如下图所示:
学新通

4. 滑动窗口限流算法

4.1 什么是滑动窗口限流算法

滑动窗口限流算法是一种常用的限流算法,用于控制系统对外提供服务的速率,防止系统被过多的请求压垮。它将单位时间周期分为n个小周期,分别记录每个小周期内接口的访问次数,并且根据时间滑动删除过期的小周期。它可以解决固定窗口临界值的问题。

用一张图解释滑动窗口算法,如下:
学新通

假设单位时间还是1s,滑动窗口算法把它划分为5个小周期,也就是滑动窗口(单位时间)被划分为5个小格子。每格表示0.2s。每过0.2s,时间窗口就会往右滑动一格。然后呢,每个小周期,都有自己独立的计数器,如果请求是0.83s到达的,0.8~1.0s对应的计数器就会加1。

我们来看下,滑动窗口,去解决固定窗口限流算法的临界问题,思想是怎样

假设我们1s内的限流阀值还是5个请求,0.81.0s内(比如0.9s的时候)来了5个请求,落在黄色格子里。时间过了1.0s这个点之后,又来5个请求,落在紫色格子里。如果是固定窗口算法,是不会被限流的,但是滑动窗口的话,每过一个小周期,它会右移一个小格。过了1.0s这个点后,会右移一小格,当前的单位时间段是0.21.2s,这个区域的请求已经超过限定的5了,已触发限流啦,实际上,紫色格子的请求都被拒绝啦。

当滑动窗口的格子周期划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确。

4.2 滑动窗口限流算法的伪代码实现

 /**
     * 单位时间划分的小周期(单位时间是1分钟,10s一个小格子窗口,一共6个格子)
     */
    private int SUB_CYCLE = 10;

    /**
     * 每分钟限流请求数
     */
    private int thresholdPerMin = 100;

    /**
     * 计数器, k-为当前窗口的开始时间值秒,value为当前窗口的计数
     */
    private final TreeMap<Long, Integer> counters = new TreeMap<>();

   /**
     * 滑动窗口时间算法实现
     */
     public synchronized boolean slidingWindowsTryAcquire() {
        long currentWindowTime = LocalDateTime.now().toEpochSecond(ZoneOffset.UTC) / SUB_CYCLE * SUB_CYCLE; //获取当前时间在哪个小周期窗口
        int currentWindowNum = countCurrentWindow(currentWindowTime); //当前窗口总请求数

        //超过阀值限流
        if (currentWindowNum >= thresholdPerMin) {
            return false;
        }

        //计数器 1
        counters.get(currentWindowTime)  ;
        return true;
    }

   /**
    * 统计当前窗口的请求数
    */
    private synchronized int countCurrentWindow(long currentWindowTime) {
        //计算窗口开始位置
        long startTime = currentWindowTime - SUB_CYCLE* (60s/SUB_CYCLE-1);
        int count = 0;

        //遍历存储的计数器
        Iterator<Map.Entry<Long, Integer>> iterator = counters.entrySet().iterator();
        while (iterator.hasNext()) {
            Map.Entry<Long, Integer> entry = iterator.next();
            // 删除无效过期的子窗口计数器
            if (entry.getKey() < startTime) {
                iterator.remove();
            } else {
                //累加当前窗口的所有计数器之和
                count =count   entry.getValue();
            }
        }
        return count;
    }
学新通

4.3 滑动窗口限流算法的优缺点

优点:

简单易懂
精度高(通过调整时间窗口的大小来实现不同的限流效果)
可扩展性强(可以非常容易地与其他限流算法结合使用)

缺点:

突发流量无法处理(无法应对短时间内的大量请求,但是一旦到达限流后,请求都会直接暴力被拒绝。酱紫我们会损失一部分请求,这其实对于产品来说,并不太友好),需要合理调整时间窗口大小。

漏桶算法 VS 令牌桶算法

漏桶算法是按照常量固定速率流出请求的,流入请求速率任意,当流入的请求数累积到漏桶容量时,新流入的请求被拒绝。

令牌桶算法是按照固定速率往桶中添加令牌的,请求是否被处理需要看桶中的令牌是否足够,当令牌数减为零时,拒绝新的请求。令牌桶算法允许突发请求,只要有令牌就可以处理,允许一定程度的突发流量。漏桶算法限制的是常量流出速率,从而使突发流入速率平滑。

比如服务器空闲时,理论上使用漏桶算法服务器可以直接处理一次洪峰(一次洪水过程的最大流量),但是漏桶算法处理请求的速率是恒定的,因此,前期服务器资源只能根据恒定的漏水速度逐步处理请求,无法直接处理这次洪峰。而使用令牌桶算法就不存在这个问题,因为它可以先把令牌桶一次性装满,处理一次洪峰之后再走限流。

5.小结

限流的常见算法有以下 4 种:

  • 固定窗口限流算法:
    实现简单,但有突刺现象;
  • 滑动窗口限流算法
    一种常用的限流算法,用于控制系统对外提供服务的速率,防止系统被过多的请求压垮
  • 漏桶算法:
    固定速率处理请求,处理任意流量更加平滑,可以实现流量整形;
  • 令牌桶算法:
    通过控制桶中的令牌实现限流,可以处理一定的突发流量,比如处理一次洪峰。

前面讨论的四种方式都是针对单体架构,无法跨JVM进行限流,而在分布式、微服务架构下,可以借助一些中间件进行限。

6.中间件限流

Sentinel是Spring Cloud Alibaba中常用的熔断限流组件,为我们提供了开箱即用的限流方法。
使用起来也非常简单,在service层的方法上添加@SentinelResource注解,通过value指定资源名称,blockHandler指定一个方法,该方法会在原方法被限流、降级、系统保护时被调用。

@Service
public class QueryService {
    public static final String KEY="query";

    @SentinelResource(value = KEY,
            blockHandler ="blockHandlerMethod")
    public String query(String name){
        return "begin query,name=" name;
    }

    public String blockHandlerMethod(String name, BlockException e){
        e.printStackTrace();
        return "blockHandlerMethod for Query : "   name;
    }
}

配置限流规则,这里使用直接编码方式配置,指定QPS到达1时进行限流:

@Component
public class SentinelConfig {
    @PostConstruct
    private void init(){
        List<FlowRule> rules = new ArrayList<>();
        FlowRule rule = new FlowRule(QueryService.KEY);
        rule.setCount(1);
        rule.setGrade(RuleConstant.FLOW_GRADE_QPS);
        rule.setLimitApp("default");
        rules.add(rule);
        FlowRuleManager.loadRules(rules);
    }
}

在application.yml中配置sentinel的端口及dashboard地址:

spring:
  application:
    name: sentinel-test
  cloud:
    sentinel:
      transport:
        port: 8719
        dashboard: localhost:8088

启动项目后,启动sentinel-dashboard

java -Dserver.port=8088 -jar sentinel-dashboard-1.8.0.jar

在浏览器打开dashboard就可以看见我们设置的流控规则:
学新通

进行接口测试,在超过QPS指定的限制后,则会执行blockHandler()方法中的逻辑:
学新通

Sentinel在微服务架构下得到了广泛的使用,能够提供可靠的集群流量控制、服务断路等功能。在使用中,限流可以结合熔断、降级一起使用,成为有效应对三高系统的三板斧,来保证服务的稳定性。

7.网关限流

网关限流也是目前比较流行的一种方式,这里我们介绍采用Spring Cloud的gateway组件进行限流的方式。
在项目中引入依赖,gateway的限流实际使用的是Redis加lua脚本的方式实现的令牌桶,因此还需要引入redis的相关依赖:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-gateway</artifactId>
</dependency>
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis-reactive</artifactId>
</dependency>

对gateway进行配置,主要就是配一下令牌的生成速率、令牌桶的存储量上限,以及用于限流的键的解析器。这里设置的桶上限为2,每秒填充1个令牌:

spring:
  application:
    name: gateway-test
  cloud:
    gateway:
      routes:
        - id: limit_route
          uri: lb://sentinel-test
          predicates:
          - Path=/sentinel-test/**
          filters:
            - name: RequestRateLimiter
              args:
                # 令牌桶每秒填充平均速率
                redis-rate-limiter.replenishRate: 1
                # 令牌桶上限
                redis-rate-limiter.burstCapacity: 2
                # 指定解析器,使用spEl表达式按beanName从spring容器中获取
                key-resolver: "#{@pathKeyResolver}"
            - StripPrefix=1
  redis:
    host: 127.0.0.1
    port: 6379
学新通

我们使用请求的路径作为限流的键,编写对应的解析器:

@Slf4j
@Component
public class PathKeyResolver implements KeyResolver {
    public Mono<String> resolve(ServerWebExchange exchange) {
        String path = exchange.getRequest().getPath().toString();
        log.info("Request path: {}",path);
        return Mono.just(path);
    }
}

启动gateway,使用jmeter进行测试,设置请求间隔为500ms,因为每秒生成一个令牌,所以后期达到了每两个请求放行1个的限流效果,在被限流的情况下,http请求会返回429状态码。
学新通

除了上面的根据请求路径限流外,我们还可以灵活设置各种限流的维度,例如根据请求header中携带的用户信息、或是携带的参数等等。当然,如果不想用gateway自带的这个Redis的限流器的话,我们也可以自己实现RateLimiter接口来实现一个自己的限流工具。

gateway实现限流的关键是spring-cloud-gateway-core包中的RedisRateLimiter类,以及META-INF/scripts中的request-rate-limiter.lua这个脚本,如果有兴趣可以看一下具体是如何实现的。

总结

总的来说,要保证系统的抗压能力,限流是一个必不可少的环节,虽然可能会造成某些用户的请求被丢弃,但相比于突发流量造成的系统宕机来说,这些损失一般都在可以接受的范围之内。前面也说过,限流可以结合熔断、降级一起使用,多管齐下,保证服务的可用性与健壮性。

参考 & 鸣谢

《分布式微服务架构》

这篇好文章是转载于:学新通技术网

  • 版权申明: 本站部分内容来自互联网,仅供学习及演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,请提供相关证据及您的身份证明,我们将在收到邮件后48小时内删除。
  • 本站站名: 学新通技术网
  • 本文地址: /boutique/detail/tanhgffgca
系列文章
更多 icon
同类精品
更多 icon
继续加载