• 首页 首页 icon
  • 工具库 工具库 icon
    • IP查询 IP查询 icon
  • 内容库 内容库 icon
    • 快讯库 快讯库 icon
    • 精品库 精品库 icon
    • 问答库 问答库 icon
  • 更多 更多 icon
    • 服务条款 服务条款 icon

论文笔记——Influence Maximization in Undirected Networks

武飞扬头像
7:45am
帮助2

Contribution

好久没发paper笔记了,这篇比较偏理论,可能边看边记比较高效一些,仅作为个人笔记,如有解读不到的还请包涵。这篇paper的贡献有两个,首先是证明了在无向图中使用greedy可以突破 1 − 1 / e 1-1/e 11/e的barrier(也就是greedy在无向图上会更强),达到 1 − 1 / e c 1-1/e c 11/e c的近似,其中 c c c为常数;其次,该论文证明了无向图上的influence maximization是 A P X − h a r d APX-hard APXhard

Motivation

作者先给了一个比较紧的例子:
学新通
这里蓝色为OPT(optimal,最优解),红色为 G R D GRD GRD(greedy算法选择的种子节点)。注意,有向图中greedy选择 v 1 , v 2 v_1,v_2 v1,v2是因为 v a l ( v 1 ) = v a l ( v 2 ) = v a l ( v 3 ) = 1 val(v_1)=val(v_2)=val(v_3)=1 val(v1)=val(v2)=val(v3)=1。然而在无向图中,情况会更不一样:
学新通
这里 v a l val val为节点的影响力,同样,这里 O P T = { v 2 , v 3 } OPT = \{v_2,v_3\} OPT={v2,v3}(因为 v 2 , v 3 v_2,v_3 v2,v3的权重大),这里依然有 v a l ( { v 2 , v 3 } ) = 2 val(\{v_2,v_3\})=2 val({v2,v3})=2。然而贪心算法会可能会选择 G R D = { v 1 , v 2 } GRD = \{v_1,v_2\} GRD={v1,v2},且有 v a l ( v 2 ) = v a l ( v 3 ) = 1 0 1 ∗ 1 / 2 ∗ 1 / 2 = 5 / 4 val(v_2) =val(v_3) = 1 0 1 * 1/2 * 1/2 = 5/4 val(v2)=val(v3)=1 0 11/21/2=5/4,那么根据Greedy的习惯, G R D = { v 2 , v 3 } GRD = \{v_2,v_3\} GRD={v2,v3},也就是说,在这个例子中,greedy会选出最优解
同样的结构,greedy在无向图和有向图上的表现却大相径庭,背后原因令人暖心:在无向图中,greedy选出的节点的影响力会和OPT的影响力重叠更少。然而这只是一个例子,不具备代表性,为了generalize这一现象,作者将使用 XYZ \textit{XYZ} XYZ lemma来构建反例(如下图)来说明在无向图中, k = 1 k=1 k=1时,greedy算法带来的近似比可以任意接近 3 / 4 3/4 3/4 k k k变大时,近似比则可以任意接近 1 − 1 / e 1-1/e 11/e
学新通
作者的整体思路分三步走:

  • Counter Example :首先构建worst case “balanced OPT”。在这个case中greedy算法的影响力函数 v a l ( . ) val(.) val(.)几乎是线性的,且每个OPT中的节点的影响力几乎是一样的。在这种情况下,greedy的近似比是 1 − 1 / e 1-1/e 11/e;除此之外,greedy的近似比都大于 1 − 1 / e 1-1/e 11/e
  • Linearity:在无向图中考虑 v a l ( . ) val(.) val(.)函数的线性情况。这里指的是,无向图中的OPT中的元素必须尽可能的不处在同一个连通分量中: v a l ( O P T ) − v a l ( O P T ∖ o i ) > v a l ( o i ) val(OPT) - val(OPT \setminus {o_i}) > val(o_i) val(OPT)val(OPToi)>val(oi),即节点 o i o_i oi的增益大于其本身的影响力。这对greedy有很大的影响。
  • Technical part:设 S S S O P T OPT OPT中前 k / 4 k/4 k/4个种子,考虑greedy选择剩余的种子的情况:作者证明了要么greedy会选择具有较大增益的点,达到 1 − 1 / e c 1-1/e c 11/e c的近似;要么就是在balanced form情况下,OPT会导致矛盾。这里矛盾的点在于:在balance form时,greedy在选完前 4 / k 4/k 4/k个种子后,接着应该继续选具有最大增益的点(Lemma 4.2),否则就不会具有比 1 − 1 / e 1-1/e 11/e更好的近似比;换句话说,假设greedy不能提供更好的近似比,那么应该选出增益低的节点,但是由于 M ′ M' M(后续会讲到)中的节点是 5 ϵ 5\epsilon 5ϵ-uniform的,和 S S S在一个连通分量中的概率会很低,因此要选一个 O i ∈ M ′ O_i\in M' OiM具有低增益是不可能的,因为增益迪就说明 O i O_i Oi和S在同一个连通分量里面。证明的过程用到了一些technical的概率分析,描述了 XYZ \textit{XYZ} XYZ Lemma。

Preliminaries

Notations

notations Meaning
< G ( V , E ) , U , p , w , k > <G(V,E),U,p,w,k> <G(V,E),U,p,w,k> An undirected graph
U a valid seed set
p p p he probability in edges
w w w the weight on node
k k k an integer
H ( V ′ , E ′ ) H(V',E') H(V,E) an live-edge graph of G G G
v a l ( S ∣ T ) val(S|T) val(ST) v a l ( S ∪ T ) − v a l ( T ) val(S \cup T) - val(T) val(ST)val(T)
S → T S \rightarrow T ST some vertices in S S S in the same component of T T T

此外,这里作者提供了一个加权图和无权图互相转化的方法。故文章中提到的图都是无权图。

Main results

学新通
这也是这篇paper的主要贡献,接下来是定理3.1的证明,也就是文章中具有technical的部分。首先构建lemma 3.1和lemma 3.2,这两个lemma想做的事情是说,当OPT不是特定的"balance"形式的时候,定理3.1是成立的。这里的“balance”其实就是worst case。

Reduction to Balanced Optimal Instances

首先定义了归一化影响力,具体定义如下。这个式子衡量了 X X X中节点的平均影响力和OPT中总体节点影响力的比值。 ρ ( x ) > 1 \rho(x) >1 ρ(x)>1说明 X X X中节点的平均影响力比OPT的节点平均影响力🐮。
学新通
给定 ϵ > 0 \epsilon > 0 ϵ>0,我们说一组节点 X X X ϵ \epsilon ϵ-uniform 的,若其每个不包含x节点的集合 X X X的元素的normalized influence浮动都很小,即 ( 1 − ϵ ) ≤ ρ ( x ∣ X ∖ x ) ≤ ( 1 ϵ ) (1-\epsilon) \leq \rho(x \mid X \setminus {x}) \leq (1 \epsilon) (1ϵ)ρ(xXx)(1 ϵ),那么该组节点的发挥就很稳定,称之为 ϵ \epsilon ϵ-uniform。
X X X ϵ \epsilon ϵ-independent的:若每个节点和X中其他节点出现在同一连通分量的概率 P r [ x → X   { x } ] ≤ ϵ Pr[x \rightarrow X\ \{x\}] \leq \epsilon Pr[xX {x}]ϵ
X X X ϵ \epsilon ϵ-balanced:同时满足 ϵ \epsilon ϵ-uniform和 ϵ \epsilon ϵ-independent,也就是说这组节点即均匀分布,又发挥稳定( v a l ( . ) val(.) val(.)几乎是线性的)。
这个章节的目的是想说明对于这样的一个 ϵ > 0 \epsilon > 0 ϵ>0,greedy要么可以实现一个 1 − 1 / e f ( ϵ ) 1-1/e f(\epsilon) 11/e f(ϵ)的近似,要么OPT就是 ϵ \epsilon ϵ-balanced。

学新通
Lemma 3.1说明了greedy算法严格保证了一个大于 1 − 1 / e 1-1/e 11/e的近似比。证明如下:

学新通

学新通
接下来的lemma说明,OPT一定满足下面两个条件之一:1、要么包含了一组 X X X,满足归一化后的X的影响力严格大于1且 v a l ( X ) = Ω ( v a l ( O P T ) ) val(X) = \Omega(val(OPT)) val(X)=Ω(val(OPT)),即 X X X的lower bound是 v a l ( O P T ) val(OPT) val(OPT);2、要么OPT可以根据条件划分为L,H,M。L的划分方法如下:
学新通
其实这里 L L L存放了一组点,满足 v a l ( L ) ≤ ϵ ⋅ v a l ( O P T ) val(L) \leq \epsilon \cdot val(OPT) val(L)ϵval(OPT),也就是将 o i o_i oi加入 Z Z Z(不包含 o i o_i oi)带来的收益小于 ( 1 − ϵ ) v a l ( O P T ) k \frac{(1-\epsilon)val(OPT)}{k} k(1ϵ)val(OPT)的那部分点,这些点至少会有 ϵ ⋅ k \epsilon \cdot k ϵk个。对于剩下的 k − ϵ ⋅ k k - \epsilon \cdot k kϵk个点,我们将它划分到 X X X中。
学新通
这样一来, ρ ( X ) > 1 \rho (X) >1 ρ(X)>1 v a l ( X ) = Ω ( v a l ( O P T ) ) val(X) = \Omega(val(OPT)) val(X)=Ω(val(OPT))

学新通

∣ L ∣ ≤ ϵ ⋅ k \mid L \mid \leq \epsilon \cdot k L∣≤ϵk,则不存在 X X X,那么继续划分。对于M和H,划分方法如下:
学新通
也就是说,在一个集合 Z = O 1 , . . . , O k Z = {O_1,...,O_k} Z=O1,...,Ok中,L是Z中一系列增益小于 ( 1 − ϵ ) v a l ( O P T ) k \frac{(1-\epsilon)val(OPT)}{k} k(1ϵ)val(OPT)的节点,那么对于Z中剩下的点,选出前 j j j个连续增益最大的点 { O δ ( 1 ) , . . . , O δ ( j ) } \{O_{\delta(1)},...,O_{\delta(j)}\} {Oδ(1),...,Oδ(j)},若这些点的影响力大于 ϵ 2 v a l ( O P T ) \epsilon^2val(OPT) ϵ2val(OPT),则将其划分为X;否则为 H H H,剩下的点为 M M M。这波操作下来, L , H , M L,H,M L,H,M中的点都不会有normalized influence大于1的情况,也就是说,greedy在这种情况下不会出现比 1 − 1 / e 1-1/e 11/e好的近似比。根据划分的方法,满足lemma3.2中的条件:M是 ϵ \epsilon ϵ-uniform的。
证明如下:
学新通

接下来肯定是证明 ϵ \epsilon ϵ-independent了。但这里只证明 M M M中的部分。对于M,有:
学新通
也就是说, M ′ M' M存在于 M M M中,且大小至少为 ∣ M ∣ − ϵ k \mid M\mid-\epsilon k Mϵk,且 M ′ M' M中每个点 O i O_i Oi M ′ M' M的连通分量中的概率最多为 5 ϵ 5\epsilon 5ϵ。这个证明暂且skip,没看懂。

Proving Theorem 3.1 for Balanced Optimal Instances

学新通

现在的情况是OPT被分成上面的样子了,这里 M ′ M' M满足 5 ϵ 5\epsilon 5ϵ-independent和 ϵ \epsilon ϵ-uniform。按照之前的证明思路,若是有一个集合满足 ϵ \epsilon ϵ-balanced,那么该集合上的 v a l ( . ) 就是几乎就是线性的。接下来的证明策略如下。首先证明,给定 val(.)就是几乎就是线性的。接下来的证明策略如下。首先证明,给定 val(.)就是几乎就是线性的。接下来的证明策略如下。首先证明,给定S = {g_1,g_2,…,g_{k/4}}$,如果贪婪算法没有达到比 1 − 1 / e 1−1/e 11/e更好的近似, 那么每个 O i ∈ M ′ O_i\in M' OiM的边际影响一定不能太大(lemma 3.4),否则就会有greedy超过 1 − 1 / e 1-1/e 11/e的情况发生。
学新通
学新通

Lemma3.4描述了greedy选完前 k / 4 k/4 k/4之后依然还能选出增益大于 4 / 5 v a l ( O P T ) k 4/5 \frac{val(OPT)}{k} 4/5kval(OPT)的情况。接下来的Lemma 3.5会考虑矛盾的情况:当 M ′ M' M中还存在更低的uniform集合。
学新通
L e m m a 3.4 Lemma 3.4 Lemma3.4 L e m m a 3.5 Lemma 3.5 Lemma3.5似乎是矛盾的,因为粗略地说,当 O i O_i Oi S S S在同一连通分量中的概率很大时,给定S,加入 O i O_i Oi的边际影响会很小。为了正式的说明这一点,我们必须为连通分量的大小和连接性事件之间的相关性建立界限;这个界限在XYZ引理(引理3.6)中被定义。
学新通

这里作者给出了两个定义:
学新通
对于一个点 j ∈ E i j \in E_i jEi,definition 1说 j j j对于 O i ∈ M ′ ′ O_i \in M'' OiM′′是"exclusive":当 j j j M ′ ′ M'' M′′ S S S的连通分量中,不在 H H H的连通分量中时, j j j被感染的概率依然小;
definition 2说 j j j对于 O i ∈ M ′ ′ O_i \in M'' OiM′′是"good":definition 2想说的是, M ′ ′ M'' M′′和S都影响j的概率并不比 M ′ ′ M'' M′′影响 j j j的概率小多少。

最后,将XYZ引理应用于 M ′ M' M和S,我们将证明, M ′ ′ M'' M′′中大部分的影响力都是由于 O i O_i Oi影响了一个"exclusive and good" j j j
学新通
到目前为止,我们集齐了所有的武器,接下来可以证明theorem 3.1了。

这里证明的思路大概如下:先假设theorem 3.1不成立,即 v a l ( G R D ) ≤ ( 1 − 1 / e c ) v a l ( O P T ) val(GRD)\leq (1-1/e c)val(OPT) val(GRD)(11/e c)val(OPT),那么由lemma 3.1,3.2和3.3可将OPT分解为 L , M ′ , M ′ ′ , H L,M',M'',H L,M,M′′,H且满足lemma 3.5( ∣ M ′ ′ ∣ ≥ k / 3 a n d P r [ O i → S ] < 14 ϵ |M''| \geq k/3 and Pr[O_i \rightarrow S] < 14 \sqrt{\epsilon} M′′k/3andPr[OiS]<14ϵ for all O i ∈ M ′ ′ O_i \in M'' OiM′′)。通过随后的几个Lemma,作者证明了再这种情况下依然有 v a l ( S ) ≥ c 2 ⋅ 1 δ v a l ( O P T ) val(S) \geq c_2 \cdot \frac{1}{\delta}val(OPT) val(S)c2δ1val(OPT)(这里S是GRD的前k个种子, δ = 14 ϵ \delta = 14\sqrt{\epsilon} δ=14ϵ ),因此原结论成立。

这篇好文章是转载于:学新通技术网

  • 版权申明: 本站部分内容来自互联网,仅供学习及演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,请提供相关证据及您的身份证明,我们将在收到邮件后48小时内删除。
  • 本站站名: 学新通技术网
  • 本文地址: /boutique/detail/tanhgcgjjg
系列文章
更多 icon
同类精品
更多 icon
继续加载