• 首页 首页 icon
  • 工具库 工具库 icon
    • IP查询 IP查询 icon
  • 内容库 内容库 icon
    • 快讯库 快讯库 icon
    • 精品库 精品库 icon
    • 问答库 问答库 icon
  • 更多 更多 icon
    • 服务条款 服务条款 icon

常微分方程建模R包ecode三——探寻平衡点

武飞扬头像
HaoranWu_ZJU
帮助1

在建立常微分方程后,我们常常会问的一个问题是: 这个常微分方程系统中是否存在平衡点?如果存在,这个平衡点是否稳定? 本节将展示如何通过ecode包来回答这个问题。

我们首先利用ecode包建立一个Lotka–Volterra竞争模型(详见第一节),
d x d t = ( r 1 − a 11 x − a 12 y ) x , ( 1 ) d y d t = ( r 2 − a 21 x − a 22 y ) y , ( 2 ) \frac{dx}{dt}=(r_1-a_{11}x-a_{12}y)x, \quad (1) \\ \frac{dy}{dt}=(r_2-a_{21}x-a_{22}y)y, \quad (2) dtdx=(r1a11xa12y)x,(1)dtdy=(r2a21xa22y)y,(2)
其中, x x x代表物种1的种群个体数, x x x代表物种2的种群个体数, r 1 , r 2 r_1, r_2 r1,r2为种群增长率, a 11 , a 12 , a 21 , a 22 a_{11},a_{12},a_{21},a_{22} a11,a12,a21,a22为两物种之间的竞争系数。

library(ecode)

eq1 <- function(x, y, r1 = 1, a11 = 1, a12 = 2) (r1 - a11 * x - a12 * y) * x
eq2 <- function(x, y, r2 = 1, a21 = 2, a22 = 1) (r2 - a21 * x - a22 * y) * y
x <- eode(dxdt = eq1, dydt = eq2)

一、数学原理

对任意一个常微分方程组,
d x 1 d t = f 1 ( x 1 , x 2 , . . . , x n ) , d x 2 d t = f 2 ( x 1 , x 2 , . . . , x n ) , . . . d x m d t = f n ( x 1 , x 2 , . . . , x n ) . \frac{dx_1}{dt}=f_1(x_1,x_2,...,x_n),\\ \frac{dx_2}{dt}=f_2(x_1,x_2,...,x_n),\\ ...\\ \frac{dx_m}{dt}=f_n(x_1,x_2,...,x_n). dtdx1=f1(x1,x2,...,xn),dtdx2=f2(x1,x2,...,xn),...dtdxm=fn(x1,x2,...,xn).
若要求出其平衡点 ( x 1 ∗ , x 2 ∗ , . . . , x n ∗ ) (x_1^*,x_2^*,...,x_n^*) (x1,x2,...,xn),则需令,
f 1 ( x 1 ∗ , x 2 ∗ , . . . , x n ∗ ) = 0 , f 2 ( x 1 ∗ , x 2 ∗ , . . . , x n ∗ ) = 0 , . . . f n ( x 1 ∗ , x 2 ∗ , . . . , x n ∗ ) = 0. f_1(x_1^*,x_2^*,...,x_n^*)=0,\\ f_2(x_1^*,x_2^*,...,x_n^*)=0,\\ ...\\ f_n(x_1^*,x_2^*,...,x_n^*)=0. f1(x1,x2,...,xn)=0,f2(x1,x2,...,xn)=0,...fn(x1,x2,...,xn)=0.
然后求解这个 n n n元方程组即可。

然而,在现实中, f 1 , f 2 , . . . , f n f_1,f_2,...,f_n f1,f2,...,fn可能是非常复杂的函数,导致很难得出该方程组的解析解。因而,我们常常采用数值方法对其进行求解。

ecode包目前采用Newton迭代法法来求解常微分方程的平衡点。

Newton迭代法
Newton迭代法是一种用于求解方程组的数值方法。如果要求解一个一元方程,
f ( x ) = 0 f(x)=0 f(x)=0
则首先随机猜测这个方程组的解是 x = x 0 x=x_0 x=x0,随后不断进行如下运算,
x n 1 = x n − f ( x n ) f ′ ( x n ) , n ∈ N x_{n 1}=x_n-\frac{f(x_n)}{f'(x_n)},\quad n∈\textbf N xn 1=xnf(xn)f(xn),nN
此时 x n 1 x_{n 1} xn 1相较于 x n x_n xn而言更接近于方程 f ( x ) = 0 f(x)=0 f(x)=0的真实解,因为 x n 1 x_{n 1} xn 1 x n x_n xn的基础上沿着函数 f ( x ) f(x) f(x)的梯度下降。当 ∣ x n 1 − x n ∣ |x_{n 1}-x_n| xn 1xn小于一个精度值 ε ε ε时,Newton迭代法停止, x n 1 x_{n 1} xn 1为方程 f ( x ) = 0 f(x)=0 f(x)=0的近似解。
需要注意,Newton迭代法并不是总能求出方程 f ( x ) = 0 f(x)=0 f(x)=0的解。当 x 0 x_0 x0的值设定的不合适时,经过Newton迭代后, x n 1 x_{n 1} xn 1可能陷入函数 f ( x ) f(x) f(x)的某个大于0的极小值中,或者落到 f ( x ) f(x) f(x)的定义域外。
f ( x ) \textbf f(\textbf x) f(x)是一个多元方程组时,需要求解的方程是
f ( x ) = 0 \textbf f(\textbf x)=0 f(x)=0
或者表达为,
f 1 ( x 1 , x 2 , . . . , x k ) = 0 f 2 ( x 1 , x 2 , . . . , x k ) = 0 . . . f k ( x 1 , x 2 , . . . , x k ) = 0 f_1(x_1,x_2,...,x_k)=0\\ f_2(x_1,x_2,...,x_k)=0\\...\\ f_k(x_1,x_2,...,x_k)=0 f1(x1,x2,...,xk)=0f2(x1,x2,...,xk)=0...fk(x1,x2,...,xk)=0
假设设定的初始解为 x 0 \textbf x_0 x0,那么随后就要不断进行如何运算,
x n 1 = x n − J − 1 ( x n ) f ( x n ) \textbf x_{n 1}=\textbf x_n - \textbf J^{-1}(\textbf x_n)\textbf f(\textbf x_n) xn 1=xnJ1(xn)f(xn)
其中, J − 1 \textbf J^{-1} J1为多元函数 f ( x ) \textbf f(\textbf x) f(x)的Jacobian矩阵,
[ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 . . . ∂ f 1 ∂ x k ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 . . . ∂ f 2 ∂ x k . . . ∂ f k ∂ x 1 ∂ f k ∂ x 2 . . . ∂ f k ∂ x k ] \begin{bmatrix} \frac{∂f_1}{∂x_1} & \frac{∂f_1}{∂x_2} & ... & \frac{∂f_1}{∂x_k}\\ \frac{∂f_2}{∂x_1} & \frac{∂f_2}{∂x_2} & ... & \frac{∂f_2}{∂x_k}\\ ...\\ \frac{∂f_k}{∂x_1} & \frac{∂f_k}{∂x_2} & ... & \frac{∂f_k}{∂x_k} \end{bmatrix} x1f1x1f2...x1fkx2f1x2f2x2fk.........xkf1xkf2xkfk

二、pp对象

上一节中提到,**相点(phase point)**是相空间中的任意一点,用于描述一个常微分方程系统在某一时刻的状态。

ecode包中,有专门的pp对象来描述一个相点。若要创建一个pp对象,就需要调用其构造函数pp()

point <- pp(list(x = 1, y = 1))
point
## phase point:
## x = 1 
## y = 1 

该函数创造了一个相点对象point。该相点位于二维空间中,一个维度为 x x x,另一个维度是 y y y,该相点的值是 ( x , y ) = ( 1 , 1 ) (x,y)=(1,1) (x,y)=(1,1)

ecode包中提供相点的四则运算函数,例如

pp(list(x = 1, y = 1))   pp(list(x = 2, y = 3))
## phase point:
## x = 3 
## y = 4

对两个位于同一空间内的相点施行加法运算,则运算后的结果也是同一空间内的相点,相点的坐标是原来两个相点坐标的和。同样,减法、乘法和除法的运算规则类似。

三、eode_get_cripoi函数

ecode包中提供eode_get_cripoi函数来获取一个常微分方程系统的平衡点。我们现在可以尝试获取常微分方程系统 ( 1 − 2 ) (1-2) (12)的平衡点,

eq_point <- eode_get_cripoi(x, init_value = pp(list(x = 0.5, y = 0.5)), 
                            eps = 0.001)
eq_point
## phase point:
## x = 0.3333333 
## y = 0.3333333 

函数eode_get_cripoi中各个参数的含义是,

  • x:常微分方程系统。一个eode对象。
  • init_value:初始解 x 0 \textbf x_0 x0。一个pp对象, 其中pp对象的维度要与常微分方程系统中模型变量的名字对应。如前所述,用户必须指定一个初始解,这样Newton迭代法才能开始运行。
  • eps:精度值 ε ε ε。当两个迭代前后的两个相点之间的距离小于精度值 ε ε ε时,Newton迭代法停止,该函数返回计算结果。该参数的默认值为0.001。

代码运行后的结果表明,当用户指定 ( 0.5 , 0.5 ) (0.5,0.5) (0.5,0.5)为初始解时,Newton迭代法能够顺利地找出模型 ( 1 − 2 ) (1-2) (12)的平衡点 ( 1 / 3 , 1 / 3 ) (1/3,1/3) (1/3,1/3)

然而,如果我们换一个初始解,

eq_point <- eode_get_cripoi(x, init_value = pp(list(x = 1, y = 5)), 
                            eps = 0.001)
## Fail to find an equilibrium point. The function will return iteration history
##               x         y
## 1             1         5
## 2     0.5049506  2.722774
## 3     0.2525784  1.610832
## 4     0.1155298  1.113498
## 5    0.03020005 0.9806953
## 6 -0.0002282437 0.9996615
## Error in eode_get_cripoi(x, init_value = pp(list(x = 1, y = 5)), eps = 0.001) : 
##   Fail to find an equilibrium point. Please try other initial values

这表明,如果以 ( 1 , 5 ) (1,5) (1,5)为起始解,Newton迭代法就无法找到平衡点。屏幕中显示了Newton迭代法的迭代过程。当迭代到第6步时,相点已经在 ( − 0.0002 , 0.9996 ) (-0.0002,0.9996) (0.0002,0.9996),这已经超出了模型变量的取值范围 0 < x , y < 1000 0<x,y<1000 0<x,y<1000,因而Newton迭代法失败。

由此可见,利用eode_get_cripoi函数探寻一个常微分方程的平衡点时,需要仔细设置初始解,并尝试多个不同的初始解,从而得到比较满意的结果。

这篇好文章是转载于:学新通技术网

  • 版权申明: 本站部分内容来自互联网,仅供学习及演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,请提供相关证据及您的身份证明,我们将在收到邮件后48小时内删除。
  • 本站站名: 学新通技术网
  • 本文地址: /boutique/detail/tanhggjbhg
系列文章
更多 icon
同类精品
更多 icon
继续加载